

Measuring Systems Engineering Productivity
Gan Wang

BAE Systems
Reston, VA

gan.wang@baesystems.com

Lori Saleski
BAE Systems
Hudson, NH

lori.a.saleski@baesystems.com

Alex Shernoff
BAE Systems
Reston, VA

alex.shernoff@baesystems.com

John C. Deal
BAE Systems

San Diego, CA
john.deal@baesystems.com

Copyright © 2010 by Gan Wang, Lori Saleski, Alex Shernoff, and John Deal. Published and used by INCOSE with permission.

Abstract. Productivity measurement has long been employed to guide economic
activities. Engineering organizations, as labor-intensive economic entities, have used a variety
of labor productivity metrics to capture the underlying productivity and efficiency (a reciprocal
notion), in their ever-enduring attempts to produce more outputs with fewer human resources.
Depending on the functional disciplines, some widely embraced and de facto standard measures
range from hours per drawing in hardware engineering, to lines of code per hour or day practiced
in software engineering. Systems engineering, a relatively young profession still struggling to
find its identity at times, has not yet reached an agreement on how it should capture its
productivity and efficiency. However, such a measure is critical in managing resources,
improving processes and work output, and establishing its utility as a bona-fide field of
engineering in production of goods and services.

This paper presents a proposed systems engineering productivity and efficiency (P&E) measure
for system development projects, where there is usually the greatest amount of systems
engineering content. This measure is defined by using parameters described in COSYSMO, a
parametric estimating model for systems engineering. We provide the definition,
recommendations for deployment, and relay our experience in applying this measure to
organizational productivity and efficiency improvement.

Introduction
In general economic terms, productivity is the amount of output created, in terms of goods
produced and services rendered, per unit input used. The general production function can be
expressed as:

()LKfQ ,= (1)

Where, Q = level of output, K = quantity of the capital, and L = quantity of labor. Figure 1
illustrates the production model in a simple context diagram, where economic processes or
activities transform certain input (material and labor) to certain output (product). Such a
measure of the output vs. input is constrained by the scope or size of product so that the
quantities of the input and the output can be meaningfully measured and correlated. From this
base definition, a variety of measures can be developed to gauge productivity from different

angles and focuses [Coelli, Rao, and Battese, 1998]. Mathematically, taking partial derivatives
of the above production function yields productivity measures for the desired perspective.
Practical examples of some widely used metrics include GDP per capita for national economy,
dollar revenue/income per employee for a business organization, gross margin for a product line;
return on asset and return on invested capital for performance of an investment, and quantity of
products per hour for a manufacturing line or facility.

Figure 1 — General production model relating certain input to certain output under a defined scope.

Engineering, unlike manufacturing activities, is predominately labor-intensive and requires no
capital on the recurring basis (or direct material). Labor productivity measures are most relevant.
Labor productivity is typically measured as output per worker or output per labor-hour. Since it
ignores the capital input, equation (1) becomes:

)(Lf = (2)

And labor productivity can be expressed in a general form as:

()
dL

Lf
dL
dQ

= (3)

As simple as it may seem, there have been noticeable difficulties in defining commonly accepted
engineering productivity measures across industries. In certain engineering fields, some
measures are relatively commonly recognized and used despite great variances. The most
noticeable effort has been in software development productivity research [Wagner and Ruhe,
2008]. A leading example of such measures is source lines of code (SLOC) or function points
(output) vs. development effort (input) for software engineering productivity [IEEE Standard
1045-1992]. In other fields, the variances seem to be much wider. The number of engineering
drawings (output) vs. design and drafting effort (input) is less uniformly defined but frequently
practiced in mechanical engineering, and the number of circuit boards (characterized by type,
such as FPGA) vs. design and testing hours for electrical engineering productivity measurement
seems to have a similar stature.

In fact, most of the productivity discussions to date pertaining to engineering development
quickly turn to software productivity [Card 2006], because SLOC as the basic scope measure
seems to be the only tangible thing people can grasp. In his work to explain the evolution and
future trends for systems and software engineering, Boehm [Boehm 2005] discussed some
expected transformations for both systems and software and examined the corresponding
changes in processes that will be necessary to support them in order to improve productivity, but
does not specifically identify any quantifiable measures of productivity besides those used in

software. A related effort [Boehm, et al, 2007] has attempted to quantify systems engineering
tasks, with an emphasis on the architecture and risk resolution effort, for the purpose of
calculating the return on investment for systems engineering, but goes no further in terms of
measures.
A more recent study [Kasunic 2008] attributes the lack of standardization and common
operational definitions for measurement as major obstacles to comparing software project
performance. Attempts are made to define a comprehensive set of performance measures but,
once again, they are mainly focused on software efforts and do not address systems engineering
efforts.

The literature search effort by the authors in preparation of writing this paper has turned up little
other than aspects of software productivity. There were very few that ventured into engineering
productivity in general or systems engineering specifically.
One difficulty is the inability to define commonly accepted engineering scope or size of a
product that consistently can be measured and applied to correlate the input and output measures
[Card 2006]. Depending on the desired perspective and outcome, there is a wide range of
possible measurable inputs and outputs and interpretations of the results. The same physical
product is a different system to different engineers or engineering disciplines. In addition, there
are enough discrepancies in measuring the same attribute that results can swing widely and fail
to represent anything meaningful in the same field. While SLOC produced per unit labor hour
seems to be straightforward enough, there are various definitions and interpretations in counting
the lines of code, as no two lines of code are created equal. COCOMO II categorizes source
lines of code into new, adapted, and reuse code [Boehm, et al, 2000]. It further examines the
degree of modification in the adapted code in terms of amount of modification in design, code
and integration, and adopts a notion of equivalent KSLOC. These are just some of the means to
enforce consistency in measurement and to minimize the degree of variance in determining the
scope or size of a product.

To date, as surprising as it may seem, there has been a void in systems engineering. There is no
commonly embraced productivity definition for systems engineering. A major impediment, once
again, has been the lack of a commonly accepted approach for sizing products for systems
engineering. Perhaps due to the diverse job descriptions, it is difficult to define a single, across-
the-board notion of a system for systems engineers. Without a quantifiable output, it is difficult
to capture or identify the input that produces it. However, as the systems get bigger and more
complex, there is an increase in the systems engineering content in developing a system. As all
organizations strive to improve productivity and efficiency, there is an urgent need for a
community-accepted definition of systems engineering productivity. The key is how to define
the system and quantify its size for systems engineering.

It is worth noting that there are at least two prevalent views in considering the roles of systems
engineering. One is the “production” or the “output” view, in which systems engineers produce
their own products or outputs in the life cycle of a system. The other is the “outcome” or the
“value-added” view, the one that says the work of systems engineering helps to shape or
influence the product or outcome of other disciplines and facilitates better results, say, in quality
or functionality. The “output” view logically supports the quantification of outputs, which
endorses the measure of productivity. It is, however, less straightforward, if not contentious, to
gauge the added portion of a product in the “value-added” view. This may be one of the reasons

that it has been difficult to determine the return on investment (ROI) for systems engineering. In
this paper, we take the “output” view, where we consider that systems engineering, as a field of
engineering, produces its own outputs.

In the following sections, we propose a definition of systems engineering productivity measures
by applying a quantity called the system size defined by COSYSMO. We then discuss the use of
such a measure through an organization pilot experience. We also provide practical advice for
implementing such a measure for differing system development types of projects.

Measuring System Size
The emergence of the Constructive Systems Engineering Cost Model, or COSYSMO [Valerdi
2005], in recent years and its adoption by industry presented an opportunity for defining a
practical productivity measure for systems engineering. The model definition solves a key
stumbling block for measuring productivity.

COSYSMO, developed at the University of Southern California with the support of a consortium
of academic, industry, and government organizations, is a parametric model for estimating the
systems engineering and integration effort required for the conceptualization, design, test, and
deployment of software and hardware systems and executing projects that develop such a
system. It estimates the standard systems engineering and integration activities typically on the
top layers of the system “Vee Model” in a standard system life cycle [INCOSE, 2007]. The
basic model definition specifies the following estimating relationship:

() CEMSizeSystemAPM E
NS ⋅⋅= (4)

Where:

 PMNS = effort in person months (nominal schedule)

 A = calibration constant derived from historical project data

 E = represents (dis)economies of scale

 CEM = composite effort multiplier determined by 14 cost drivers

COSYSMO defines a quantity called system size based on four sizing parameters or size drivers:
system requirements (REQ), system interfaces (INT), system algorithms (ALG), and operational
scenarios (SCN). Further elaboration of the model definition introduced a reuse model in
counting these size drivers that allows classification of each driver count in terms of up to five
categories of reuse and three levels of difficulty. Therefore, the system size is defined by the
following equation:

∑ ∑

Φ+Φ+Φ=

k r
krdkdkrnknkreker wwwwSizeSystem)(,,,,,,,,, (5)

Where:

krx ,,Φ = quantity of “k” size driver, in the reuse category “r” and with the level of
difficulty “x”

k = {REQ, IF, ALG, SCN}

r = {New, Modified, Deleted, Adopted, Managed}

wr = weight for defined categories of reuse

wx = weight for “Easy,” “Nominal,” or “Difficult” size driver

System size has a basic unit of measure known as “eReq,” or equivalent requirement, which is
the equivalent of one new nominal requirement in terms of end-to-end systems engineering
effort. This unit of measure allows the conversion of four heterogeneous quantities into a single
homogeneous unit and, subsequently, establishes a common denominator in measuring systems
of different types and quantifying diversified system engineering work.

The underlying premise of this model is that its four specified size drivers completely describe
the direct product and capture the scope for the work that systems engineers produce, regardless
of the type of systems to build. In other words, the defined system size quantity can reliably
determine the size of the system output in terms of the total effort required to produce it. It is
worth pointing out that the validity of this model is still being verified through practical
applications and may take a long time to be established for the entire community. However,
when accepted, it provides a foundation that enables the measurement of productivity across all
system types.

Proposed SE Productivity and Efficiency Metrics
Therefore, following the general form of the productivity as the ratio of output produced over the
effort consumed, we can define the systems engineering (SE) productivity as:

)/(houreReqs
HoursSETotal
SizeSystemtyProductiviSE = (6)

Where the system size is the quantity defined by COSYSMO using the four size drivers and the
total SE hours are the end-to-end systems engineering effort in developing a system or executing
a system development project, from concept definition to delivery or sell-off.

On an intuitive level, SE productivity can be interpreted as the amount of system (measured in
equivalent requirement, or eReq) realized or output produced per unit of systems engineering
labor (measured in engineering hours) worked, under a nominal product environment. This
system output may be viewed as the work-in-progress inventory from an accounting point of
view. A reciprocal measure is the SE efficiency and it captures the number of systems
engineering hours required to produce or realize a unit of system (measured in eReq) as:

)/(eReqhours
SizeSystem
HoursSETotalEfficiencySE = (7)

Theoretically, with these definitions, any two system development projects or any group can be
evaluated comparatively in terms of how productive the teams are and how well the projects are
executed. This can apply to both projects in execution (assuming one can estimate the system
size and the effort at project completion) and post-mortem. There are, however, important
caveats and constraints in practical implementation. First, the absolute numbers produced by the
above equations in isolation have little practical meaning. It is because the quantity system size
measured in eReq is somewhat arbitrary, as there is no universal definition of requirement. The
correct use is to observe the trend as a project progresses through its life cycle or to compare peer

projects that are measured using the same definition over time. These observations should be
made periodically or aligned with similar programmatic and technical milestones. It is trend data
(increase or decrease in productivity) that provides valuable guidance to project managers — not
absolute values by applying the above equation.

The second implication is that the observation should be made to similar or comparable projects
or systems only. One certainly would expect productivity differences between two systems of
different types and scales. For example, it would not be a fair comparison between hardware-
centric and software-centric systems, proprietary electronics board design and commercial-off-
the-shelf (COTS)-based system integration, or a pharmaceutical product and a civil engineering
project. Meaningful productivity comparisons can be made to like systems only.

Finally, two projects that measure to the same or similar system size can be expected to have
different outcomes in terms of systems engineering effort consumed due to different project
environments or system complexity factors. COSYSMO recognizes this by defining 14 cost
drivers that act as effort multipliers and capture system-specific complexities and project-unique
environments. The aggregate quantity of these drivers is known as the composite effort
multiplier (CEM) and is defined by COSYSMO version 1.0 as:

∏
=

=
14

1j
jEMCEM (8)

There are alternative implementations of this multiplier in practice. See details in the next
section ― “Applications of the SE Productivity and Efficiency Metrics.”

The effort multipliers or the CEM help to compensate for environments unique to each system or
project under consideration. When CEM is greater than 1.0, it adds a penalty to the project,
which implies that for the system of the same size it would require greater SE effort. On the
other hand, when CEM is less than 1.0, it adds a benefit and predicts smaller effort. Divided by
CEM, the resulting SE hours represent the required effort for the same system size under the
nominal project condition. On an intuitive level, a CEM of less than 1.0 implies that, had the
project been conducted under the nominal condition, it would require greater effort. On the other
hand, a project under a more-complicated environment (with CEM > 1.0) could have been
completed with less effort.

We normalize the SE productivity metric using the same CEM factor, so that peer projects can
be compared on a level playing field. Therefore, the normalized SE productivity can be defined
as the actual productivity measured multiplied by CEM and it is expressed as below:

CEM
HoursSETotal
SizeSystemtyProductiviSE Norm ⋅

= (9)

And, consequently, the normalized SE efficiency can be expressed as:

⋅=

SizeSystem
HoursSETotal

CEMEfficiencySE Norm
1 (10)

Once again, on the intuitive level, the normalized SE productivity represents, on average, the
amount of a system in terms of equivalent requirement produced per SE hour under a nominal
project environment. Similarly, the normalized SE efficiency represents the required SE hours to

realize one nominal requirement under the same project condition. These normalized measures
provide a more objective or accurate comparison between or among projects.

Applications of the SE Productivity and Efficiency Metrics
Through an engineering productivity improvement initiative, the proposed set of P&E metrics
was piloted at the authors’ affiliated organizations. The authors helped to implement these
metrics, which were applied to select projects in different business areas and product lines. This
was the first time the same set of measures was applied to multiple product areas and results
were evaluated at the organizational level. It also was the first time that systems engineering
attributes (requirements, etc.) were directly tied to program performance metrics (actuals and
ETC recorded using the EVM systems). It encouraged managers to analyze the effect in a
quantitative manner and examine the root causes.

Over time, we observed the improvement of productivity in multiple product areas ― perhaps
due to the attention given by the data collection and causal analysis activities and the secondary
effect of the measurement process. During the implementation of these metrics, we learned and
matured the application methods, which we share in this section.

As with any measurement, the key is consistency. Practically, this boils down to consistency in
collecting or estimating total systems engineering effort and assessing system size. It’s not
always clear what is included in systems engineering and a policy must be put in place to guide
data collection [Wang, et. al, 2009]. We created a standard, three-dimensional construct of work
breakdown structure, organization breakdown structure, and project life-cycle phases for data
collection. We provided training and specific guidelines on the scope of each engineering
function based on the “task-ownership” policy. In this way, we were able to better enforce
consistency in collecting systems engineering effort across multiple programs.

Several considerations must be given to counting COSYSMO size drivers, as subjectivity can
easily skew the calculation of system size. The following aspects have proven to be the major
factors in ensuring consistency:

The four COSYSMO size drivers ― system requirements, system interfaces, system-specific
algorithms, and operational scenarios ― all are system-level attributes. It is important to define
what the “system-level” is. We adapted an ISO-15288-based model and defined system-level to
be at the sell-off level of the prime-mission product (PMP) at the system delivery, which is not
necessarily the same PMP of the overall end-user system (which can be at a higher level in the
overall system hierarchy). A direct implication to this policy is that we must group like
programs for productivity comparison. Putting a tier-2- or tier-3-level system with a tier-1
system would easily skew the measurement.

COSYSMO v2.0 adopts a reuse model in counting the size drivers [Wang, et. al, 2008], as the
systems we build today are rarely from “scratch” but more likely an evolution of previously
developed systems. The reuse model takes into account an amount of reuse in terms of systems
engineering activities and divides the four size drivers into five categories of reuse. They are:

• New: Elements that are completely new.

• Modified: Elements that are inherited but require tailoring or interface-level changes and
verification and validation testing.

• Deleted: Elements that are removed from a system, which requires tailoring or interface-
level changes and verification and validation testing.

• Adopted: Elements that are incorporated unmodified, but require verification and
validation testing. Also known as “black box” reuse.

• Managed: Elements that are incorporated unmodified and require no added systems
engineering effort other than technical management.

To further ensure consistency, an activity-based framework is provided to guide the driver-
classification exercises, where the five reuse categories are evaluated against six system-level
processes, as shown in Figure 2. Given a driver, it is classified into the respective reuse category
depending on the processes it goes through. For example, a system interface is classified as
“Modified” if it incurs all the engineering activities except implementation or architecture-level
changes, while as an operational scenario is considered “Adopted” when it is inherited and only
goes through requirement definition and V&V testing steps but skips the entire system analysis
and design, as well as implementation activities. This classification framework proves to be
effective in reinforcing the required level of consistency across projects and individual
estimators.

 Tech.
Management

Requirement
Definition

System
Analysis &

Design

Architecture &
Implementation

Change

Tailoring
/ Interface

Change

V&V
Testing

New √ √ √ √ √ √

Modified √ √ √ √ √

Deleted √ √ √ √ √

Adopted √ √ √

Managed √

Figure 2 — An activity-based reuse framework for classifying COSYSMO size drivers.

As we stated in the previous section, the composite effort multiplier, or CEM, is an important
factor in compensating for differences in project environments and system complexities.
However, our implementation of COSYSMO v1.0 has revealed a critical deficiency of the
original model. The cost-driver ratings have an over-dramatic effect on the estimated effort,
such that they unreasonably skew the results [Wang, et al, 2008]. We have modified the model
parametric relationship and changed the CEM with the following expression:

6
1

6

1

8
1

8

1

⋅

= ∏∏

== j
j

i
i TFAFCEM (11)

Where CEM is a product of two geometric means. The first is more than the eight application
factors and the second is more than the six team factors. The modified relationship has brought
the expected impact of the 14 cost drivers into a reasonable range.

We have developed a number of internal tools for data collection and analysis. They include a
standard data-collection tool to capture data cross the company, an SQL database for data storage

and preliminary data processing, and a number of normalization, calibration, and plotting tools
for semi-automatic data processing and plotting.

Figure 3 ― Histogram of SE productivity measures for a group of selected projects represents a

snapshot of the distribution at one point in time.

The recorded data is reviewed in tabular form or in plots for management briefings. One useful
plot is the histogram that can be graphed with bar charts, as shown in Figure 3. The histogram is
typically a bell-shaped curve and represents program concentrations in different productivity
ranges. Each histogram is a snapshot of one point in time. The histogram representation is
convenient and gives one a direct sense of where the mode is and how tight the distribution is. It
is easy to derive quantitative statistics such as mean, mode, and standard deviation. By
observing the mode’s movement between measurements, we get a gauge on the productivity
trend. The change in standard deviation over time also indicates the group’s productivity-
variance trend.

Productivity by Program

Time Period

Pr
od

uc
tiv

ity

Figure 4 ― Time traces of SE productivity measures for select projects, displaying the history of

project evolution and maturity.

Another useful display is to plot the trace of productivity over time. Figure 4 shows an example
of such a display, where each trace represents the history of a single project or program. These

“time traces” are intuitive and readily show the individual and relative behavior of projects in
progress and the productivity changes. When multiple projects are overlaid together, as in
Figure 4, one can observe the group behavior of multiple projects over time and access the
similarity and dissimilarity of these projects in terms of maturity and productivity trends.
However, it is best to align project trends by technical milestones rather than by calendar time
for better comparison of project maturity.

Practical Lessons Learned
There are number of practical lessons learned from our implementation of the proposed SE P&E
measures, which are:

• Apply the measures to a select group of projects throughout the development life cycle.
Measure them periodically — for example, on a three- or six-month cycle, or at the
significant technical milestones such as System Requirements Review (SRR),
Preliminary Design Review (PDR), Critical Design Review (CDR), Test Readiness
Review (TRR), etc. Measuring at the milestones has the advantage of comparing
programs at similar levels of system maturity.

• When using estimate at completion for total SE hours, be sure to estimate using a
different model or method from the COSYSMO model applied to measuring system size.
Otherwise, the derived measures using the same model simply follow the calibration
curve and, therefore, are not meaningful.

• Compare like-projects only. As explained in the previous section, comparing projects of
different natures (HW-intensive or SW-intensive) can have the effect of “comparing
apples and oranges” and may yield misleading results.

• The productivity metrics are best applied to system-development projects, for which the
required COSYSMO-defined technical attributes can be readily captured and the model is
best-suited. The model is less-relevant to operations and sustainment programs.

• Expect scattering of data, especially at first. But if you apply the model (and parameter
definitions) consistently, the data should converge over a few periods.

• Training is critical and can mitigate the risks of inconsistency. As stated before,
consistency is of the utmost importance in measurement. A good foundation for
collecting any and all data is an investment well-spent.

• It is helpful to have the same reviewer (or reviewers) who understands the model and
provides consistent guidance in collecting the data, especially in assessing system size,
for all monitored projects.

• Use measured data constructively to help projects improve. Use it as the catalyst for
additional in-depth analysis of what is happening. It is not conclusive. Do not use it as a
“whip” or a label (“green,” “yellow,” or “red” programs, for example). Do not
discourage participation of projects. Separate and protect the identity of an individual
project’s data, recognizing its sensitivity when compared to other projects in the
company. Look at global behavior rather than individual projects.

Conclusion
“If you can’t measure it, you can’t manage it,” as stated in a management mantra. The proposed
systems productivity and efficiency measure represents the first independent metric for systems
engineering as an engineering discipline. It bridges an apparent gap and provides a potentially
effective enabler in our ever-enduring quest to produce more output (or provide more added
value) at lower costs or to improve productivity and efficiency.

In this paper, we proposed a set of systems engineering productivity and efficiency measures,
including definitions and barriers to achieving consistent measurement data. We include a
discussion of system size as a key piece of measurement data to support productivity and
efficiency measures. We also provide practical advice on implementing these metrics to measure
multiple system-development projects in an organization. Application of these metrics and the
necessary consideration for reuse within projects also is discussed. Some key lessons learned
from our implementation experience also are provided.

This effort is still in the early phase of discovery and evaluation. There are several areas for
possible improvements. One of the known deficiencies of this model is that it still supports the
Waterfall development process only and assumes a pre-deterministic set of requirements and
system architecture. There are no effective extensions for Agile models, for which some
premises do not hold. This is rooted in the nature of COSYSMO, which uses Waterfall as its
basic process. As more programs require Agile Development, such extensions soon will become
necessary.

It would also be an interesting and useful exercise to explore ways of measuring the added value
of a product by systems engineering for the “value-added” view, as mentioned in the
introduction section. If we can quantify the effect upon a product, whether in quantity, quality or
functionality, that other engineering disciplines produce in a normalized manner, we can
establish the baseline for capturing the change to the product or the value enhancement. It would
then open up the doors to meaningfully measure productivity and to better quantify the ROI for
systems engineering from the “value-added” perspective.

While still at an early stage, the proposed measure provides an alternative to engineering leads
and project managers to better gauge the effort of systems engineers and to more effectively
manage the activities and resources. As a profession, systems engineering could use more
compelling quantitative evidence to justify its value in this ever more competitive marketplace.

References
IEEE Standard for Software Productivity Metrics, IEEE Std. 1045-1992, IEEE Standards Board,
1993

INCOSE Systems Engineering Handbook, version 3.1, INCOSE, 2007

Boehm, B., Software Engineering Economics, Prentice Hall PTR, Upper Saddle River, NJ, 1981

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,
Reifer, D. J. and Steece, B., Software Cost Estimation With COCOMO II, Upper Saddle River,
NJ: Prentice Hall, 2000

Boehm, B., Some Future Trends and Implications for Systems and Software Engineering

Processes, Wiley InterScience, October 2005

Boehm, B., Valerdi, R., Honour, E., The ROI of Systems Engineering: Some Quantitative
Results for Software –Intensive Systems, Wiley InterScience, December 2007
Card, D. N., The Challenges of Productivity Measurement, Proceedings: Pacific Northwest
Software Quality Conference, 2006

Coelli, T., Rao, D. S. P., Battese, G, An Introduction to Efficiency and Productivity Analysis,
Kluwer Academic Publishers, 1998

Kasunic Mark, A Data Specification for Software Project Performance Measure: Results of a
Collaboration on Performance Measurement, Software Engineering Institute, July 2008

Valerdi, R., The Constructive Systems Engineering Cost Model (COSYSMO): Quantifying the
Costs of Systems Engineering Effort in Complex Systems, VDM Verlag, 2008.

Wagner, S., Ruhe, M., A Systematic Review of Productivity Factors in Software Development,
2nd International Workshop on Software Productivity Analysis and Cost Estimation (SPACE
2008), Technical Report ISCAS-SKLCS-08-08, State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, 2008.

Wang, G., Valerdi, R., Ankrum, A., Millar, C., Roedler, G., COSYSMO Reuse Extension,
Proceedings of 18th INCOSE International Symposium, June 2008.

Wang, G., Valerdi, R., Boehm, B., Shernoff, A., Proposed Modification to COSYSMO
Estimating Relationship, Proceedings of 18th INCOSE International Symposium, June 2008.

Wang, G., Valerdi, R., Roedler, G., Ankrum, A., Gaffney, J. E., Harmonizing Systems and
Software Estimation, Proceedings of 19th INCOSE International Symposium, 2009.

Wang, G., Shernoff, A., Turnidge, J., Valerdi, R., Towards a Holistic, Total Engineering Cost
Model, Proceedings of 19th INCOSE International Symposium, 2009.

Biographies
Gan Wang, Ph.D., is an Engineering Fellow at BAE Systems. He has been engaged in the
research and development of systems engineering processes, engineering cost-modeling and life-
cycle cost estimation, decision support methods, and system-of-systems engineering and
management methodologies. Prior to joining BAE Systems, Dr. Wang spent many years
developing real-time geospatial data visualization applications for mission planning and
rehearsal, battlefield management, command-and-control (C2), flight simulation, and aircrew
physiological training systems. He also developed control systems and aircraft simulation
models for various man-in-the-loop flight training systems. He has more than 20 years of
experience in systems engineering, software development, research and development, and
engineering management involving complex, software-intensive systems.

Lori Saleski is a project engineering manager at BAE Systems, where she has been working on
the development of the COSYSMO-based system engineering model and process and the total
engineering estimation model and process over the past 3 years. She is an engineering manager
for mission management programs. Lori has worked in software engineering for 25 years and
holds a bachelor’s degree in computer science with a mathematics minor from the University of
Maine.

Alex Shernoff is a systems engineer at BAE Systems. He has been working on the deployment
and implementation of COSYSMO at BAE Systems to localize it to organizational platforms and
processes and to support systems engineering productivity and efficiency analysis. Prior to this
effort, Alex assisted in the planning and logistics of BAE Systems’ continuing support for the
annual INCOSE Conference. Prior to joining BAE Systems, Alex graduated with a bachelor’s
degree in electrical engineering from The Ohio State University. He specialized in high-voltage
power and electromagnetism.

John C. Deal serves as the Vice President for Maritime C4I Programs in Defense Systems &
Solutions, Information Solutions. Prior to his current assignment he served as the Vice President
of Systems Engineering in the E&IS OG, and as both Director for C4ISR Systems Engineering
and Program Director for WIN-T, AMF JTRS and other defense agency programs within the
Communications and Information Systems Business Area of the Communications, Navigation,
Identification and Reconnaissance Division, BAE Systems, Inc. John served in the US Army for
29 years retiring as a Colonel. His final active duty assignments included Commander, U.S.
Army Information Systems Engineering Command, and Executive Officer, Office of the
Director of Information Systems for Command, Control, Communications, and Computers,
Army CIO, Headquarters, Department of the Army. He was selected and served in two senior
level fellowships; as a member of the Secretary of Defense Strategic Studies Group II and as a
member of the Ridgeway Center for International Security Studies, University of Pittsburgh, PA.
John holds a Bachelor of Arts degree in Physics from the University of Alaska, a Master of
Science degree in Electrical Engineering from the Naval Postgraduate School, a Master of Arts
degree in National Security and Strategic Studies from the Naval War College, and a Master of
Arts degree in International Relations from Salve Regina University.

	Measuring Systems Engineering Productivity
	Introduction
	Measuring System Size
	Proposed SE Productivity and Efficiency Metrics
	Applications of the SE Productivity and Efficiency Metrics
	Practical Lessons Learned
	Conclusion
	Biographies

	Prev:
	Next:
	Close:
	First:

